

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 583
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

FPA Findings for Flutter against the existing
Development Frameworks

Sana Rizwan, Shoaib Uzair, Zaid Saeed and Abdullah Naveed

Abstract— Rise of web/mobile applications running different operating systems, the problem arises to cater to their needs. The need of cross-platform

development comes into play. These platforms ease the complexity for the developer by allowing them to write a single code that would work on multiple

OS. However, cross-platform development comes at a cost of trading native speed and accuracy for portability. Nevertheless, Flutter is an open-source

Software Development Kit (SDK) that combines high performance and reliability for Android, iOS and now with the advent of Flutter 2.0 Web

Applications into one package. Cost/ budget effectiveness can calculated for the differentiation with Effort calculation, productivity index measurements

by weighting factors in PL size depending upon Functional Point Analysis technique.

Index Terms— Flutter, Google, iOS, Android, Cross-platform Development, React Native, Kotlin, Swift, Functional Point, External Inputs, Internal inquiry

——————————  ——————————

1 INTRODUCTION

Contemporary practice in the software world is there are

two major mobile application operating systems i.e,

Android and iOS. These two platforms have little to

nothing in common, so developing applications that look,

feel and perform the same is very challenging and require

different skill sets. For instance, Android Native

applications are written in Java and/or Kotlin and iOS is

written in Swift and/or Objective-C. This results in

companies having to double the production cost in

developing their application and having to settle for

performance deficits in order to make the two applications

look and feel the same. Using a cross-platform framework

is usually slower than native because it has to bridge itself

to the OS thus costing performance. However, Flutter uses

its Rendering engine to solve this problem. More over

applications, developed using cross-platform frameworks

have slower releases whenever the main OS updates. The

framework would have to update itself in order to

accommodate to the new changes. To tackle this

conundrum Google, in August 2017, developed Flutter.

Written in Dart programming language, Flutter provides

the usability of writing one code that runs on both

Android, iOS devices and just recently with its stable 2.0

release Web applications [1]. All this with minimal

performance penalty compared to their native

programming languages.

2 EASE OF USE

Taking advantage of its cross-platform framework, flutter

is being used to develop high-speed applications for

mobile devices. Flutter does this by using the OS native

widgets instead of sourcing web views, and then rendering

it using its high-speed rendering engine to render each

view [2]. This helps in the applications looking similar and

perform as fast as if they were coded in their respective

native languages.

An application written in native code can access the OS

features directly as shown below (Figure 1). The operating

system either Android or iOS lets the native code access its

OEM Widgets [3]. If for example, a code written in Java can

access Android Widgets but cannot under any

circumstance access the native widgets of iOS (Figure 2). In

order to do so cross-platform frameworks such as ReactJS

uses a bridge that takes care of the communication with the

OS regardless of which it is (Figure 3), but this creates its

own problem; a bottleneck. Animations, swipes etc [4].

could slow down the application so Flutter has a slightly

different approach to this that gives it a drastic

performance edge over its competitor cross-platform rivals.

Flutter has a rendering engine that paints over the native

widgets that increases performance regardless the OS

(Figure 4).

————————————————

 Sana Rizwan, Assistant Professor, Department of Computer

Science COMSATS University Islamabad, Lahore Campus

Pakistan. E-mail: sana@cuilahore.edu.pk

 Shoaib Uzair, Student of BSCS, Department of Computer Science

COMSATS University Islamabad, Lahore Campus Pakistan. E-

mail: fa17-bse-012@cuilahore.edu.pk

 Zaid Saeed, Student of BSCS, Department of Computer Science

COMSATS University Islamabad, Lahore Campus Pakistan. E-

mail: fa17-bse-015@cuilahore.edu.pk

 Abdullah Naveed, Student of BSCS, Department of Computer

Science COMSATS University Islamabad, Lahore Campus

Pakistan. E-mail: fa17-bse-018@cuilahore.edu.pk

IJSER

http://www.ijser.org/
mailto:sana@cuilahore.edu.pk

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 584
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

 Figure 1 Native application can access the Native Widgets

Figure 2 A Java Application can access Android Widgets BUT

NOT iOS

 Figure 3 Cross-Platform with a bridge [4]

 Figure 4 Flutters Skia Rendering Engine

3 FLUTTER ARCHITECTURE

3.1 Dart

In Flutter, every application written in Dart programming

language. This language is used extensively within Google

and therefore has been developed and maintained by it as

well. Originally Dart was developed to replace JavaScript

that is why it has most of the important characteristics of

that language. It contains Keywords such as ‘async’ and

‘await’ [3]. Moreover, as Dart is a modern programming

language it provides the developers with better memory

optimization with the help of Generational Garbage

Collection.

 3.2 Flutter

Flutter uses Androids Native Development Kit (NDK) and

iOS Low Level Virtual Machine (LLVM) for the

compilation process of the Dart code that compiled into

Native code. Another feature that Flutter has is Hot

Reload. What this does is that it sends the updated code

into the already running Dart Virtual Machine (DVM) [2].

This enables the developer to look at changes made to the

code on the go without having to compile the code every

time after the first compilation of the session.

 3.3 Widgets

In Flutter, every object on the screen is a Widget that

nested inside another widget. That is because all classes are

dependents of the Widget class. Once we nest widgets into

each other, we create a hierarchy known as the “Widget

Tree” which contains parents and children. Text fields,

containers, image boxes, scrolling bars, etc. everything is

classified as a widget.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 585
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

4 FLUTTER AGAINST ITS COMPETITION
(NATIVE APPLICATIONS)

 4.1 Code
To put in perspective on how the above-mentioned

positives play out for Flutter a comparison was carried

out in which three source codes were created for on

particular application. One was in Flutter the other in

Kotlin (Android Native) and Swift (iOS Native).

According to Figure 5 we can see that both the lines of

code and the number of files needed to code the same

application is less in Flutter compared to both Android

Native and iOS native [3].

Figure 5 Code Comparison

 4.2 Development Time

Next comes the coding time. Like mentioned before that

Flutter can produce both Android and iOS applications

with the same piece of code, it is also faster to produce that

particular code. Both native applications have the

advantage of using a drag and drop facility but that is

useful only till a certain extent, linking that drag and

dropped code creates a bit of difficulty to integrate as

compared to writing the code out right in the first place.

The development time statistics as shown in Figure 6.

Figure 6 Development Time

 4.3 CPU Performance

Like stated before the direct communication between the

Native applications with their respective OS is the quickest

but the performance deficit caused by Flutters Rendering

Engine Skia is minor [2]. In addition, the average is better

than both Native versions as shown in Figure 7.

Figure 7 CPU Performance

5 FLUTTER AGAINST REACT NATIVE

Flutter and React Native have little similarities; For

starters, two enormous tech companies, Google and

Facebook respectively, back both. Both frameworks are

open source and free to use. However, that is where they

almost end.

The main difference between the two is their performance.

Since Flutter does not use a bridge but its own Rendering

C++ Engine Skia, it has an upper hand compared to its

React Native rival. React Native has to send JSON

messages to establish a connection between the source

code and OS. Flutter uses in built libraries and

Frameworks such as Material Design and Cupertino to

establish connection, which is a much more efficient way

[2].

Another aspect for better development is

documentation. The better documented the framework

is the more a developer is attracted to it. Flutter

Documentation is user friendly and gives good

explanation to the user. This is helpful if the user is a

novice. Whereas the React Native 1 is poorly document

and is more focus on complicated processes that only

people with a good grip with JavaScript (Language

React Native is written in java) [3].

Then comes the deployment phase. Applications in

Flutter can be publish to the App Store or Google Play

with the help of one command line code where as in

React Native you need a third-party tool in order to

deploy the application. With these little things, Flutter

despite being new has gained much popularity [4]. By

2020, Flutter has seen an increase form 3.2pc to 7.2pc

since 2019 as shown in Figure 8.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 586
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

 Figure 8 Flutter vs React Native

6 CASE STUDY IMPLEMENTATION AND
ANALYSIS

“Click and Pick” android app developed to calculate Flutter

and react native with java jdk performance.

The app was about to facilitate customer in a different

manner, actually the problems faced with conventional

shopping that it was time consuming and tiring for people.

Visiting various stores to find what need and being

disappointed when the product want is not available. Then

comes the issue of stores being crowded during prime

times and in the recent pandemic when people had to

maintain social distance conventional shopping was not

going to be feasible. Then the problem of online shopping

that delivers the items to customer’s doorstep also had its

issues. Even though getting your order delivered at door

seems continent but there is often a delay in delivery,

damaged items or sometimes items being lost in transit.

Keeping all of this in consideration, we devised a different

approach that was take-aways. If we take a fast-food

restaurant as an example, a customer goes to the restaurant,

places an order in their vehicle and gets their order. This is

fast and convenient. We implied the same concept to Click

& Pick. The user places their order on their app; the stores

in question pack the order and send it to the collection

point. Once their order is ready, the customer just simply

drives into the collection point and collects their order.

Functionalities were developed and cost-effective impacts

were calculated. Estimating the software cost and price is

an important aspect for software development. For efficient

and effective project management, the software

development cost estimation accuracy will be the major

feature for budgeting, tracking, planning, tracing and

control.

Before the starting of software engineering process, cost

and duration for software project should be settle among

customers, financer/s, developers and stakeholders.

7 METHODOLOGY / ALGORITHMIC MODEL

Constructive Cost Model algorithmic model will adapt to

find the effort and development time for software project

estimations, these estimations will be accurate as it based

on formula calculations by the initial calculations of

function point analysis scheme (FPA). Formulas for

predication effort based on estimate of project size, KLOC

(if known) and function point.

Function point analysis (FPA) is use to make estimate of

the software project, including its testing in terms of

functionality or function size of the software product.

However, functional point analysis may be use for the test

estimation of the product. The functional size of the

product is measure in terms of the function point, which is

a standard of measurement to measure the software

application.

 7.1 Objectives of FPA

The basic and primary purpose of the functional point

analysis is to measure and provide the software application

functional size to the client, customer, and the stakeholder

on their request. Further, it will use to measure the

software project development along with its maintenance,

consistently throughout the project irrespective of the tools

and the technologies.

Measurement parameters identified for the calculation of

software interacting prototypes in forms of input, output,

queries, internal logical operations in OS and interface

interaction and command handling procedure that are

explained in table 1. These 5 parameters are also called

functional units of software system as shown in Figure 9.

Measurements Parameters Examples

1. External Inputs(EI) Input screen and tables

2. External Output (EO) Output screens and

reports

3. External inquiries (EQ) Prompts and interrupts

4. Internal files (ILF) Databases and directories

5. External interfaces (EIF) Shared databases and

shared routines

Table 1 Measurement Parameters with Examples

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 587
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

Figure 9 Functional Units system

 7.2 Functional Prototypes

Software houses and companies can symbolize their

requirement for software product, project idea, real time

scenario simulation with user experience, find new

techniques to discover or improve and spot limitations with

functional prototypes [5]. Project budget allocation can

identify before the launch of software product after

gathering the losses and ignoring the problem commands

with the critical analysis of risk details. Although functional

prototypes means simply no reason to ignore the actual

value of software prototyping. Some are the Functional

prototypes with the concern of hi fidelity or low fidelity

shown below in Figure 10;

 View product

 Product details

 Product rating

 Reviews

 Shopping cart

 Search

 Select payment method

 Orders

 Add Favorites

 Delivers order

 Product in cart

 Pending orders

 Add new product

 Edit product details

 Buyer Screens

Seller Screens

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 588
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

Manager Screens

Figure 10 Functional Prototypes

FP characterizes the quality of the software system

depending upon the complexity and thus are often wont to

depict the project time and the force demand as needed in

the requirements. The effort needed to develop the project

depends on what the software system will do.

Function Point is programming language freelance.

This methodology employed for real time software

scenarios, processing systems, business intelligent systems

like information systems, MIS etc. The 5 parameters

mentioned higher than also are referred to as information

domain characteristics [6].

All the parameters mentioned above are assigned some

weights that have been experimentally determined and are

shown in Figure 11 Function Point Table.

Figure 11 Function Point Table

Object points square measures the simplest way of

estimating effort size, almost like supply Lines of Code

(SLOC) or perform Function Points [6]. They are not

essentially associated with objects in Object-oriented

programming, the objects stated embrace screens, reports,

and modules of the language. The amount of raw objects

and quality of every square measure calculable and a

weighted total Object-Point count then computed and want

to base estimates of the trouble required in the form of

efforts needed.

Screens Complexity

Buyers screen Simple

Seller screen Medium

Manager screen Medium

Pricing screen Difficult

Product screen Medium

Sales screen Medium

Table 2 Weighting Factors – Screen complexity

Reports Complexity

User review report Medium

Pending order report Simple

Deliver order report Simple

Add Favorites report Medium

Order history report Medium

Available rider report Medium

Buyer report Simple

Manager report Difficult

Seller report Medium

Rider report Medium

Table 3 Weighting Factors – Report complexity

According to the assigned complexity keeping in view the

objects of the functional concerns that are simple, medium

and difficult [7]. Weighting factors are assign depending

upon the screens, reports and 3GL components comparison

Table 2 and 3 as mentioned;

 Figure 12 OPA -- Screen

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 589
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

 Figure 13 OPA -- Reports

 Figure 14 OPA – Complexity Weighting

 6.3 Calculate NOP by Weighting Factors

Weighting factors will extract out depending upon the

complexity factors depending upon simple, medium and

difficult complexity measures as shown in Figure 12, 13, 14.

Total number of object points (NOP) [7] will depend upon

the total number of weighting complexity i.e 56 in this case

as shown in Table 4.

Functional

Concerns

Objects Complexity Weights

Buyers Screen Simple 1

Seller Screen Medium 2

Manager Screen Medium 2

Pricing Screen Difficult 3

Product Screen Medium 2

Sales Screen Medium 2

User review Report Medium 5

Pending

order

Report Simple 2

Deliver order Report Simple 2

Add

Favorites

Report Medium 5

Order history Report Medium 5

Available

rider

Report Medium 5

Buyer Report Simple 2

Manager Report Difficult 8

Seller Report Medium 5

Extra or

Pending rider

Report Medium 5

Total NOP 56

Table 4 Total Number of Object Points

 7.4 Calculate Software Productivity and Efforts

Calculate PROD that depends on data receiver past project

data, so that ratio between efforts imposed on total number

of object points calculated in software project for

estimation. Developer past experience and capability and

CASE maturity are the major factors by which estimator

can predict the productivity rate for effort based software

estimations [8].

PROD = NOP/ Person-Months

 Figure 15 OPA – Productivity Rate

In this particular case complexity is nominal of developer

experience, whereas high is CASE maturity and capability

capture by Figure 15.

Developers experience is nominal = 13

CASE maturity and capability is high = 25

Calculated NOP = 56

Productivity (PROD) = Developers experience and

capability + CASE maturity and capability

PROD = 13 + 25 = 38

 Average = 38/2 = 19

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 590
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

Effort (Person-Months) = NOP / PROD

 = 56 / 19 = 2.94 P-M

Function Point Estimation (FP  KLOC)

Functional

Requirements

External

User

Types

Complexity Function

Point

Buyers screen External

Output

Simple 4

Seller screen External

Output

Medium 5

Manager screen External

Input

Medium 4

Pricing screen External

Input

Difficult 6

Product screen External

Interface

Files

Medium 7

Sales screen External

Interface

Files

Medium 7

User review

report

External

Input

Medium 4

Pending order

report

External

Inquiry

Simple 3

Deliver order

report

External

Inquiry

Simple 3

Add Favorites

report

External

Output

Medium 5

Order history

report

External

Output

Medium 5

Available rider

report

External

Output

Medium 5

Buyer report External

Output

Simple 4

Manager report External

Output

Difficult 7

Seller report External

Output

Medium 5

Rider report External

Output

Medium 5

Total 79

Table 5 Total Function Points Calculation

Total Function Points Calculated in Table 5 = 79

Figure 16 Programming Languages KLOCs

 Published Figure 16 for Java Language show that:

o 1 FP = 30 LOC in java (Object oriented

languages) [8]

 Estimated size

o 79 * 30 = 2370

 = 2 KLOC

Flutter Language with the base java contains 2.94-effort

person per months, with estimated 2 KLOC with the

concerned weighting factors having 38 productivity rate,

therefore software development language will give good

chances to new project managers as well as new

development team to get more and more experiences with

the recurrence procedure in SDLC stack.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 591
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

7. CONCLUSION

The Flutter framework provides the user with great ease

due to its cross-platform characteristics. The developer can

write code for both Android and iOS easily with little

performance drawbacks compared to its other cross-

platform rivals. Not only has that Flutter possessed a highly

organized documentation that supports amateur

developers to start their projects. This has resulted in

people moving towards the platform quickly, and now

with the fresh launch of Flutter 2.0, the web version has

now a stable release. However, it cannot be demanded that

Flutter would always be the best choice. If the requirements

of OS specific opting for the Native Framework would be

the best way to go. That said with the current trajectory of

the growth of Flutter is a promising addition to the

application development industry with debating the cost

Effectiveness, part of effort requirements and productivity

index by emerging development team.

ACKNOWLEDGMENT

The authors wish to thank Department of Computer

Science COMSATS University Islamabad, Lahore Campus

for the support and help.

REFERENCES

[1] John Wiley & Sons, “Beginning Flutter®: A Hands On

Guide To App Development”

[2] Marco L. Napoli, Beginning Flutter: A Hands On Guide

to App Development, 2019, ISBN: 978-1-119-55082-2

[3] Adam Boduch, Roy Derks, “React and React Native: A

complete hands-on guide to modern web and mobile

development with React.js”, 3rd Edition

[4] Adam D. Scott, “JavaScript Everywhere: Building Cross-

Platform Applications with GraphQL, React, React Native,

and Electron”, 1st Edition

[5] Anatoly Kotlyar, “The Role of a Functional Prototype in

Software Engineering”, https://medium.com/cxdojo/the-

role-of-a-functional-prototype-in-software-engineering-

1588a56ce56e

[6] David Garmus, David Herron, “Function Point

Analysis: Measurement Practices for Successful Software

Projects (Addison-Wesley Information Technology Series)”,

1st Edition

[7] Hareton Leung and Zhang Fan, “Handbook of Software

Engineering and Knowledge Engineering—Software Cost

Estimation”, pp. 307-324 (2002),

https://doi.org/10.1142/9789812389701_0014

[8] Software cost estimation COCMO II, Chapter 26,

https://ifs.host.cs.standrews.ac.uk/Books/SE7/SampleChapt

ers/ch26.pdf

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 2, February-2022 592
ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

IJSER

http://www.ijser.org/

